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SOME BUBBLE AND CONTACT PROBLEMS®

JOSEPH B. KELLER

Abstract. A number of problems involving bubbley i a flud. or contact of surtaces, or both are
vonsidered. In each case the size und or the shape ot the bubbic. or the 1ocation ot the points of contadt. are
unkhnown in advance and must be found. When the probienis aie toimulated mathematicaliv, boundany
conditions niust be satistied at the bubble surface and at the contaci points. which dre thus “free” boundarnes
The problems are. postbuckling behavior of an elastic tube. contact problems involving a buckfed elasticy,
steep capillary waves with trapped bubbles. deformation of 4 bubble 1n a untform flow. distortion of a bubble
in a straining flow. free oscillation of an underwater explosion bubble, and forced vscillation of a bubble 1n «
sound field.

1. Introduction. Physical problems involving bubbles or drops in a fluid generally
require the determination of the size and. or the shape of the bubble or drop surface,
Problems involving the contact of elastic or fluid surfaces usually require the location of
the points of contact. In both cases, boundary conditions must be satisfied at the
unknown bubble or drop surface or contact point. Thus these surfaces or points are
“free’ boundaries, which must be found as part of the solution of the problem. In the
case of bubbles in contact with themselves or with other surfaces. there are contact
points on the bubble surface. These points are thus free boundaries of frec boundaries,
which might be called “free free boundaries™ '

With the help of a number of coworkers, I have analvzed various free boundary
problems involving bubbles and/or contact of surfaces. I shall describe some of them in
this report. emphasizing the reasons for considering them. the principles involved in
their formulation. and the nature of the results. In all cases. some analvtical results and
some numerical results were obtained. I shall presentsome of the numerical results and
some figures based on them. indicating what the numerical methods were when that
seems appropriate. [ shall just mention the analvtical results. referring for their detailed
presentation to the relevant published articles.

The goal of this report is to show that certain problems involving contact of surfaces
can be formulated and analyzed in a relatively simple way. In some cases. the
maintenance of contact is required to prevent the unphysical phenomenon of a surface
crossing over itself. When the surface is a fluid-fluid interface, the resulting contact may
lead to the occurrence of bubbles or drops. When the bubbles or drops are deformed.
parts of their surfaces may again come into contact with one another and form new
bubbles or drops. Since phenomena involving the contact of surfaces are of widespread
occurrence, it is to be hoped that the results reported herc will stimulate further
investigations of them.

2. Postbuckling behavior of an elastic tube. While investigating blood fHow n
arteries and veins, my colleague S. 1. Rubinow and I realized that the pressure of the
blood in a vein could fall below the ambient pressure outside the vein. As a
consequence, the wall of the vein could buckle. thus changing the vein cross section
from circular to some other shape, and thereby increasing the vein's resistance to blood

* Received by the editors November 21, 1979
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' Whitham {1, p. 289] has called discontinuity lines on shock surfaces shock shocks’
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BUBBLF AND CONTACT PROBLEMS 443

flow. Therefore, with J. E. Flaherty [2], we studied the buckling and postbuckling
behavior of an elastic tube.

We assumed that, for any given pressure difference p, the equilibrium configura-
tion of the tube would be a cylinder, and we denoted by C its cross sectional curve. Then
the equations of elastostatics governing the tube are the same as those of an elastic ring
C compressed by a force p per unit length. This problem had been studied by .
Tadjbakhsh and F. Odeh {3). They assumed that the ring is inextensible and is governed
by the Fuler-Bernoulli beam theory. with the bending moment proportional to
kis)- 1. Here ks is the curvature of C at arclength « along it, and 1 is the curvature
when C is a circle. In dimensionless variables these assumptions lead to the equation

2.0 k"+§k“—rk—p=l), 0ss=27.

Here ¢ is a constant to be determined. In addition, k must be periodic with period 2.
and the integral of k over a period must be 2. This latter condition follows from the
fact that kis) = A'(s), where f15) is the angle between the tangent to  and some fixed
direction.

For every value of p -0, this problem has a solution kis)r=1 and ¢ = ) - D
corresponding to C being a circle. As Tadjbakhsh and Odeh [3]showed, this unbuckled
solution is the only solution for p < 3, while for p > 3 there are other solutions. Each
other solution is periodic with period 27/n for some integer n =2 and, for a suitable
origin of s, it is odd in s. Thus each such solution satisfies the conditions

2 k=0, k'tm 'm0, J kisvdy = min.

Furthermore. it exists only for p - p.  where ps, s called the nth buckling load. They
computed the solutions numerically for the first few values of n for u range of p - p.....
For the ath solution. when p reached a second cnitical value p .o n - 2. n pairs of points
came into contact with one another. while for 1 = 2, one pair of opposite points came
nto contact. For p - p .. the nng crossed over atself.

Crossing over may be possible for opposite parts of a ring, if one part comes out of
the plane contatning the rest of the nng However itis not possible for a tube. Therefore
we reexamined the problem for the nth solution with p > p . to find a solution which
does not cross overitself We required that for po-p . one pair of points in each period
be in contact with one another For n - 2. these points are the endpoints of the period,
so there s only one pairin contact. and thevare ats - = 2 Forn -2 the locations 5,
of the contact points must be determined

Inthe case n - 2 we found that the sccond condittion in 2 21 had 1o be changed so
that 2 2 became

-

AR ' ETIET L o= >, " Aovids - o 2 fnrp?p;.

Wesohved 21 and 7 2 numenicaliy to obtain A v and ¢ for vanous values of p from
roop. Tupte; <247 Thenwe sohved 2 band 2 M forp fromp =p., =

S uptap p 19 34 when the curvature k-7 21 at the contact poant became zero.

Fou p oo p . we avsumed that the solution has anainterval of contact extending from
some value © tapto = T Thenwe showed that s and the shape of the remaining part
of the solution coghld te abtained by a similanty transformation from the result for
pop Theresultnare shownn big 1 and corresponding results for n = 4 are shown in

Fig 2
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446 JOSEPH B. KELLER

Once we had the shape of the tube’s cross section for n = 2 and each value of p, we
solved the equation Auw = —1 within the cross section with « = 0 on the boundary for
each p. This yielded the velocity of the flow of a viscous fluid along the tube. The results
showed that the conductivity of the tube, i.e., the flux of fluid for unit pressure gradient
along the tube, decreased drastically when the tube began to buckle. These results have
been confirmed quantitatively by the experiments of H. Zeller and R. Wirtz [4]. They
measured the flow through a rubber tube buckled by a pressure difference p, and their
results agreed fairly well with our calculations, as is shown in Fig. 3. Their correspond-
ing results for a tube of polyvinylchloride (PVC), also shown in Fig. 3, do not agree so
well, although they would do so if the Young’s modulus E used in scaling the horizontal
axis were replaced by E/2. The cross sections of buckled Penrose tubing in various
stages of collapse during flow look like the cross sections in Fig. 2 (see [5],[6]), asdo the
cross sections of the vena cava in normal breathing [7].

O Theorie: Flaherty, Keller and Ru’binow (1972
/@fn @ Rubber-Tube: E = 1.6 - 10° N/m*, ¢ = 0.5, h = 5.5 mm, R,, = 25.2 mm.

1.0 “ ¥ PVC-Tube: E=10.4 - 10°N/m’, ¢ =0.4, h =5.0mm, R,,=24.9 mm.
0.8 J
0.6
0.4
0.2
0
0
. _E h'
=P~ P L
P " EAREITI R

FIG. 3. The normalized flow through a tube as a function of the pressure difference between the outside und the
inside. The open circles and the dashed curve are based on the theory described in § 2. The black circles are
experimental values for a rubber tube measured by H. Zeller and R. Wirtz [4]. The black triangles are their
measured values for a tube made of polvvinylchloride (PVC). They would have agreed better with the theory if a
smaller value had been used for Young's modulus E of PVC.

3. Contact problems for a buckled elastica. In 1744, Euler formulated and solved
the problem of the buckling of a thin elastic rod or column, which he called an
“*elastica™, subject to a compressive load P at its ends. He found that a rod clamped at its
ends remained straight or unbuckled for 0 = P < P,, = 477, where P,, is the dimension-
less first buckling load. For P > P, the rod could buckle, and as P increased it deformed
more and more until a pair of points came into contact at some value P, ,. For P> P, , the
elastica crossed over itself. If we consider the elastica to lie in a plane, or to be a cross
section of a cylindrical elastic sheet, it cannot cross itself. Therefore J. E. Flaherty and |
sought a solution for P > P, which did not do so [8].

In dimensionless variables, we let 6(s) be the angle between the x-axis and the
tangent to the elastica at arclength position s, with s ranging from 0 to 1. Then the
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equation of equilibrium, according to the Euler-Bernoulli beam theory, is
3.1} 6, +Psind=0, O=ss=1.

The condition that the ends are clamped along the x-axis yields
1

3.2y 8i0)=0, 6(1H=0, j sin 8(s) ds = 0.
0

We solved (3.1) and (3.2) numerically for various values of P from ‘P, =47’ to
P., =72.187, at which contact first occurs. 1See Fig. 4.)

81

25

90.00

00 25 50 75 1.00
P:40.000
®] BT
St 8
[
s :
000 25 0.00 25
P»60.000 P:72187
§1=0.130
o -
3 ° 3
.
4 n
8 g\ %
: : :

0.00 .25 000 .25 Q.00 .28
P=200.000 P=400 000 P=600.000
$,=0.098 $,=0.076 $1=0.085

FiG. 4. The shape of a clamped elastica in the mode n = 1 for six values of the end load P. Contact occurs at
P. =72.187 For P> P, the similarity solution was used 1o compute the shape of the loop between the points of

conlact.
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For P > P.|, we require contact to occur between the two points s, and 1 - sy, with
51 to be found in the range 0 < s, < 3. Then (3.1) holds only in the intervals 0 < s < 5, and
1 -5, <s <1, while between these intervals it is replaced by

13.3) 8. +{P-R)sin# =0, si<s<l-gs,.

Here R is the contact force, which is to be found. We seek a solution in which 6(s) is
antisymmetric about s =3, so it suffices to solve (3.1) for 0<s<s, and (3.3) for
51 < s < 3. In addition, we have the six conditions

1.2
80)=0, 6(s)=m/2, 6(3)=0, I cos Ais)ds =0, & and 8, continuous at s,.
3.4)

These six conditions suffice to determine s,, R and the two integration constanis in each
interval.

We found that the solution of (3.3), which describes the closed loop, could be
determined for any P > P,, from the solution at P, by a similarity transformation.
Therefore for P> P, we only had to solve (3.1) numerically, together with the
appropriate conditions from (3.4).

The results for three such values are shown in Fig. 4. We also found that, for P
large, s, is given by

{3.5) s1~1.854P V1-6.055P ', P>1.

Thus the contact points approach the endpoints as P tends to infinity.
These results can be confirmed qualitativei, with a strip of flexible plastic, by
holding one end in each hand and bringing the ends toward one another.

4. Capillary waves with trapped bubbles. Sufficiently short waves on the surface of
a liquid are governed mainly by surface tension. For many years such capillary waves
were studied on the assumption that the amplitude a was much less than the wavelength
A, so that the steepness s =a/A was small. Then it was possible to linearize the
governing equations. In 1957, D. G. Crapper {9] sought to express the wave motion as a
power series in 5. From the regularity of the first few coefficients he guessed the general
term, verified it, and then was able to sum the series in closed form. His result yielded
waves ranging from sinusoidal waves for s small up to a steepest one at s =.73, when
adjacent waves touched one another at one point. For s > .73, his result was unphysical
since adjacent waves overlapped one another.

In view of the studies reported in the two preceding sections, I believed that it
should be possible to obtain steeper waves by enforcing contact of adjacent waves and
preventing overlap. Therefore J.-M. Vanden-Broeck and 1 [10] did just that. Following
Crapper, we considered steady two-dimensional periodic capillary waves on the surface
of an inviscid incompressible fluid of infinite depth. We considered the complex position
x+iy as a function of the complex potential ¢ +iy in the halfplane ¥ =0. The
streamline ¢ = O corresponded to the free surface. At it, the pressure in the fluid had to
exceed the pressure in the air above the surface by the surface tension times the
curvature of the surface. In dimensionless variables this led to the equation

4.1) (x,i + y:)“l —1-T(x, Ve — y,,,xw)(xf. + yi)““ =0 ony=0.

Here T is a dimensionless constant proportional to the surface tension. The
specification of the fluid velocity at y = —o0 is that (x,, y,.) (1, 0) as ¢ » —00.
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To complete the formulation of the problem, we emploved the assumed penodicity
in ¢ of the solution and the Hilbert transform to obtain

3.0 voig, :J. e - 1eot mig' - o cos =g =~ o'jde’

In terms of v, the steepness v is given by

PRI

3.3 s =~J Vil i de.

Equations (4.11-(4.3} constitute a problem for the determination of the penodic
functions x_ (¢, 0}, v (¢, M and T for a given value of s,

When s is large enough, we modify the preceding formulation by requiring contact
to occur at the point ¢ = a. ¢ = () on the free surface, with « to be found in the interval
0 < a < }. Then at the contact point we require

4.4 rota ) =0, _\-ug\(h:J' ,\".a‘;‘()ik'ic:é.
{1

Since contact of adjacent waves results in a trapped bubble of air, we permit the
rressure in the bubble to exceed the pressure in the air above the surface by the
..mensionless amount P. Then we must replace the right side of 14.11 by P in the range
a<e=h

We solved the problem without contact by introducing N + 1 equally spuced mesh
points ¢, in the interval 0 = ¢ = 1, the values ¥, = x 1y 01, and the values v ofy e
midway between adjacent mesh points. By using the trapezoidal rule in 3.2y we
expressed the v) in terms of the v). Then we used centered four-point interpoiation and
difference formulas to evaluate the derivatives in 4.1 . In this way we converted 301
into a set of N - | nonlinear algebraic equations for the +',and 4.3 mtoan N - 2nd
equation. We solved these equations by Newton's method for 7 and the N -1
quantities ¢ using ¥ =40 and N = 61, The two scts of results agreed to four decimals
with each other and with Crapper’s solution.

To find solutions with contact, we introduced the two extra unknowns a and £, and
the two extra equations (4.4). We also forced a to be a mesh point by separately
subdividing the intervals 0 i ¢ S and a s ¢ = . Then we solved the resulting equa-
tions for a. P. T and the x,; by Newton's method using 60 mesh points. For each value of
s we used, as the initial approximation to the solution. the solution for a slightly smaller
value of s, starting with Crapper's solution at s = 0.730.

We were able to find solutions with s > 0.730, and we computed themupto s = 1.5
It seems clear that we could compute them for any larger value of s by increasing the
number of mesh points. Typical solutions are shown in Fig. 5. We also found soutions
with § < 0.730, in the interval 0.663 <y < 0.730, so that two solutions exist in this
range-—Crapper’s and this new one. As s decreases to 0.663. the curvature of the
surface at the contact point decreases to zero. which is why this family ends there. On
the other hand, as s = x, each bubble becomes infinitely long and narrow, with 1ts width
proportional to e Simultaneously the surface above them tends to a senes of
semicircles tangent to one another.

5. Deformation of a bubble in 2 uniform flow. Surface tension forces a bubble in a
liquid at rest to become spherical in three dimensions and circular in two dimensions.
But pressure forces due to a fluid lowing around a bubble can deform it to another
shape. We have seen an example of this in the previous section, where the bubbles were
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$=0.6635 shows the bubble on a scale expanded by a factor of 10.
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long and tapered at their upper ends. But in that case each bubble was affected by the
presence of the upper surfuce and the other bubbles. It is more important to know
how an isolated bubble is deformed, since bubbles often occur in isolavon. Therefore
J.-M. Vanden-Broeck and 1 {11] investigated this deforination.

We considered a two-dimensional bubble in a steady potential How of an invisaid
incompressible fluid. The flow was assumed 1o be unfoim at inhiuty and the pressure
within the bubble was assumed to be coiastant. On the unknown bubble boundary, the
fluid velocity was required to be diected tangentially and the bubble pressure was
required to exceed the Huid pressuie by the surtace tension multiplied by the curvature
of the boundary. Upon introducing dimensioniess variables, we found that the
coetticient of surface teasion o could be eliminated by using 20/ p07 as the unit of
length, where p is the density of the fluid and U is the velouity at intinity. Then the
problem contained a single dimensionless parameter y. detined by

(5.1) y=2ps—po/pU".

Here p, is the pressure in the bubule and p, is the stagnation pressure, which equals the
pressure at infinity minus pU”/2.

Before solving the problem, we required that the flow and the bubble be symmetric
about the x-axis, which we took parallel to the velocity at infinity. Then it sutficed to
consider the flow outside the bubble 1n the haliplane v =0. This fow region cor-
responded to the halfplane ¢ 2 0 of the complex potential planie, and the bubble surface
corresponded to the segment —H <& < b of the axis ¢ =0, with » unknown. It was
convenient 1o set ¢ = by so that the bubble surface corresponded to the scgment
—1< ¢ <1, & =0. Then we sought 1 —iv as an analytic fuiiction of b¢ + i in this
halfplane. The velocity at infinity was (x,. v, )= (5. 0).

By applying Cauchv’s theorem to v+~ iv — b and, taking the real part. we obtained
the Hilbert transform relation

L vae , _
(5.2) .\',,\s;,()‘:b*'"J‘ \;,——-‘ dy ', o RS
T ¢ T4

We also wrote the pressure jump condition on the bubble surface in the form

1 N 3 1.3

(5.3) bAxl+yi) PE(vae mave HXL VI Ty Sl 1, w=0.

In addition, the symmetry about the x-axis yielded

)‘¢(¢v0)=oc

4
(5 ) »:*211‘(\(,‘,05

These equations (5.2)-(5.4) constituted the problem for the determination of
x. (¢, 0), v. (¢, 0) and b for a given value of the parameter y.

To solve these equations, we required the bubble to be symmetric about the v-axis
and therefore about the ¢-axis. Then we could restrict our considerations to the interval
0= ¢ <1 with y (0, 0)=0. Within this interval we introduced the new variable a in
place of ¢ by the equation ¢ = | - a . This eliminated from the solution the singularities
at the stagnation point ¢ = I, & = 0. Once this new variable was . .aed, we introduccd
mesh points and values of the unknown functions at the mesh points just as in the
previous section. By proceeding in the manner described there, we converted the
equations above into a set of nonlinear algebraic equations for b and the values of v, at
the mesh points.
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To sohve these equanions by Newton's method for o aiven value of v, we needed an
initial approximation to the solution. Therefore we deternmuned the asvmptotie form of
the solution for y large. when the bubble tends to a aircle of radius ¥ 7. We used this as
the initial approximation for alarge value of v anditerated until we obtained 4 solution.
Then v ¢ used that solution as the inttial approximation for a shightly smaller vulue of +.
and o on.

Three of the resulung bubbles are shownan Fre. 6 for v = 2.3, 0.0, and 0. 42 At
v =042 the opposite sides of the bubble just touched one another on the x-uxis. The
bubble might then splitinto twe bubbles. For 3 - 0 our result agreed with the analvig
solution obtained by E. B. Mcl cod 112110 this special case.

L= -4
\\
—_—
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,/ V-
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i
iy
'//
7 N
x \

SIS SERS RS R S SRR
-().2 01 [ 0.1 0.2

FiG. A One halt of the Computed Fubkle protiles ey - 23 v s 0and v = v - -0042

The half-bubbles shown in Fig. 6 also represent bubbles attached to a wull with
contactangle # = 7'2. We also determined the shapes of bubbles attached to a wall with
other vaiucs of 8 by a suitable modification of the preceding method. The ditference in
the formulation was that the night side of 1 5. 41 wasreplaced by =tan 3. Then in changing
variables weset ¢ =1 —a ™ "

For each value of 3. the bubble began as a circular arc of radius y ' for v very laige.
and it deformed as y was decreased. Finally a value of y. which ‘ve called v, was
reached at which opposite sides of the bubble came into contact with one another. For
$3 = m/2 the contact occurred on the wall as in Fig. 6. However fo- 3 =+ 72, it occurred
off the wall as is shown in Fig. 7 for 3 = 27/3 = 120°. Bubbles are presented in that
figurefor y =13, y=-0.6and y = y,t2%/3) = - 1.6. The negative values of y indicatc
that the pressure in the bubble is less than the stagnation pressure. If the bubble breaks
into two at the point of contact, part of the bubble will be off the wall and part will
remain attached to the wall. and our calculation determines the size of each.
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== -6

+ + Il

+ 4 +
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

F1G. 7. Three computed profiles for a bubble on a wall with contactangle 3 =120°and y =13,y - -0.6
and y=y,=-1.6. Aty = yo = — 1.6, the bubble 1ouches itself at about the distance v = 0.35 from the wull.

6. Bubble distortion in a straining flow. In the mixing of two fluids, a drop of one
fluid may be broken up into smaller drops by the action of the other fluid flowing around
it. To investigate this process J.-M. Vanden-Broeck and I [13] considered the distortion
of a drop or bubble in a straining flow, a problem proposed to us by Professor A.
Acrivos. As in the preceding section, we treated the two-dimensional case of a constant
pressure bubble or drop in an inviscid, incompressible fluid. The stream function of the
flow was assumed to be axy far from the bubble.

The formulation of this problem and the method of solution were very similar to

those of the preceding section, so we shall just indicate the differences and then describe
the results. The length scale we chose was (2u/pa’)'’’, the velocity scale was
(2aa/p)’ 7, and then the sole dimensionless parameter was y defined by
(6.1) y=20p.~py)/Qaa) "p'?
Because of the symmetry of the incident flow, it sufficed to solve the problem in the
angular sector 0= 9 = #/4 with = O astreamline and ¢ = 7/4 a potential line. We then
introduced new variables, used the Hilbert transform, introduced a mesh and difference
formulas, etc. Finally we solved the resulting equations by Newton's method.

The calculated bubbles for three vatues of y are shown in Fig. 8. As y » X, the
bubble tends to a circle of radius v '. and the bubble shown for v = § is still close to a
circle. However when y has decreased to zero, the bubble 1s nearly a square with
rounded corners. This is understandable because there are four stagnation points where
the bubble meets the x and v axes. At them, the fluid pressure is maximal and it pushes
the bubble surface inward. When y = —1.24 these four points have moved further in
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y =4

FiG. 8. Computed profiles of u bubble in a straining flow with y =5,y =0and y=-124.

while in between adjacent pairs of them four horns or spikes have appeared. We have
also determined the ultimate form of the horns as y is further decreased. We find tha*
near each tip opposite sides come into contact with one another and form a smatl bubble
there.

7. Damping of underwater explosion bubble oscillations. Now we shall consider a
time dependent problem, the oscillation of the gas bubble produced by the detonation
of an explosive charge under water. Such a bubble is initially small, spherical, and at
very high pressure. It expands rapidly, remaining spherical and pushing the water
radially outward. When the bubble pressure reaches the ambient value, the water is still
moving outward, causing the bubble to overexpand. When the expansion finally stops.
the bubble begins to contract but the inertia of the water again causes it to overcontract
and the process repeats itself. In this way the radial oscillations of underwater explosion
bubbles are produced. The dots in Fig. 9 are experimental values of the radius of one
such bubble at different times after detonation, and they show the typical oscillations.

In 1916, Rayleigh formulated the theory of these oscillations on the assumption
that the water was inviscid and incompressible. His theory yielded undamped periodic
oscillations because it did not contain any mechanism for energy loss. It was later
realized that acoustic radiation was the main loss mechanism. This was verified by

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
F1G.9. The bubble radius as a function of time for a 0.55 Ib. charge of tetryl detonated at a depth of 300 fr.

below the water surface. The dots are experimental points and the solid curve is calculated from (7.4). The unit
of length is & = 6 inches and the unit of time is &(ppo )72 = 4,85 milliseconds.
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estimating the acoustic loss, calculating the consequent damping, and comparing the
result with observations.

To incorporate the loss mechanism into the theory, 1. I. Kolodner and I [14), in
1951, developed a new theory of the oscillation taking account of the compressibility of
the water. We did so by using the wave equation for the potential function of the water
motion, rather than Laplace’s equation which Rayleigh had used.

The use of the wave equation to describe large amplitude motions was considered
inappropriate at that time, and it still is so considered by many fluid dynamicists. On the
other hand, the less accurate Laplace equation is regarded as perfectly suited to
describe such motions. This difference in attitude is probably due to the differences in
the methods of derivation of the two equations. In the derivation of the wave equation,
the smallness of the velocity is emphasized to justify linearization of the compressibility
terms. However in the derivation of Laplace's equation, the compressibility terms are
just ignored from the beginning, so it is never necessary to mention that the velocity is
small.

Our theory of the bubble oscillation is based on the assumption that the pressure
P(a) in the bubble is a function of the bubble radius a(r), given by the adiabatic relation

(7.1 Pla)=k[4a’/3]".

Here k and y are given constants. The potential function ¢(r, ¢) of the water motion is
assumed to satisfy the wave equation with sound speed c:

(1.2 A¢ —c %, =0.
Then the pressure p(r, t) in the water is given by the Bernoulli equation

(7.3) pir,ty=po—ple.+i¢ih

where p, is the initial pressure and p is the density of the water. The formulation is
completed by requiring the pressure p(aq, t) in the fluid to equal that in the bubble, P(a),
at r = a, and requiring the fluid velocity ¢.(a, 1) to equal a, at r = a. We also give the
initial radius and velocity of the bubble and assume that ¢ = ¢, =0 for r >a at t =0.

From this formulation we derived the following autonomous nonlinear second-
order ordinary differential equation for a(r):

(7.4) (@, —cNaa,+3ai ~d)-a’ +a '(a’A), =0.
Here A(a) is defined by
(7.5) Ata)=p '[Pla)-p.].

If we divide (7.4) by ¢ and let ¢ become infinite, we obtain Rayleigh's equation for a(¢).
A phase plane analysis shows that the equilibrium point of (7.4) is a spiral point,
corresponding to damped oscillations, while that of Rayleigh's equation is a center,
representing periodic oscillations.

In Fig. 9 the solid curve represents the solution of (7.4) obtained numerically for
initial conditions corresponding 1o the bubble whose observed radius is given by the
dots. We see that the theoretical curve is in good agreement with the observed data,
and it correctly predicts the damping of the radial motion due to the radiation of
acoustic energy. From a(t) the pressure pulses radiated by the bubble can be found.
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8. Forced oscillations of a gas bubble in a sound field. To describe the oscillation of
small bubbles in a luid. such as cavitation bubbles or air bubbles, 1tis necessary to tahe
into account surface tension and viscosity as well as inertia. Therefore, Plesset {137 and
others moditied Rayleigh's equation to include these etfects. They also included an
external time dependent pressure. representing an incident sound field

Lauterborn { 16] solved the moditied equation numerically for periodic incident
sound fields, seeking periodic oscillations of the bubble. He obtained them for small and
moderate values of the amplitude of the applied pressure. From his results he plotted o
response curve for each applied pressure, showing the maximum bubble radius of the
pertodic solution as a function of the applied frequency. However, for very large
amplitudes of the applied pressure, the solution did not become periodic: or if it did, the
amplitudes did not lie on a smooth curve.

Ivseemed to me that this difficulty with the large amplitude oscillations could be
avoided by taking into account the acoustic radiation from the bubble, just as was done
in the preceding section to describe the damping of underwater explosion bubble
oscillations. Therefore my student M. Miksis and I {17] modified (7.4), the equation of
Keller and Kolodner, to include surface tension. viscosity and an incident sound field, in
the same way as Plesset and others had miodified Rayleigh's equation.

The equation we derived in this way is

du 1 o 3, 4ua, 2
a,,[——ala,—c')]z—af+a,.\uz)—c[—a?*L—;—Aiail
®.1) p 2 2 pa pa
. ( @y
+(1(1,A(<1~*2(1+-)g tt~ajcy. .
i

Here a(1) is the bubble radius at time «, ¢ is the sound speed in the fluid, p is the fluid

density, u is the coefficient of viscosity of the fiuid, o is the surface tension, 2¢ "¢ is the

time derivative of the potential of the incident sound field evaluated at the center of the

bubble and pA(a) is the difference between the bubble pressure and the pressure at

infinity. The pressure in the bubble was taken to be ka " + p,, where p. represents a .
constant vapor pressure and k and y are constants. When ¢ = x, (8.1) reduces to the

equation solved by Lauterborn. while when u =¢ =g =p, =0, it reduces to the

equation (7.4} of Keller and Kolodner.

To treat this equation we tirst studied the free oscillations corresponding to ¢ =0
by a phase plane analysis, and obtained results like those of Keller and Kotodner [141.
We also solved (8.1} numerically for the same case shown in Fig. 9 and obtained the
same result because surface tension and viscosity are negligible in that case.

Next we chose 2¢ 'g"(t) = p ' P sin wt, which is the same forcing function as was
used by Lauterborn [16]. Then we solved the equation analytically by the method of
averaging, in the same way as Prosperetti [18] had solved the equation used by
Lauterborn. The results were similar to his, showing harmonic, subharmonic and
ultraharmonic resonances.

Finally we solved the eq1ation numerically as an initial value problem. as Lauter-
born did. Some of our results are shown in Fig. 10. They agree with his except at the
largest forcing amplitudes. Then our equation yields periodic solutions and a response
curve similar to those which we both found for smaller amplitudes, whereas his did not.
Thus the inclusion of the effects of acoustic radiation in (8.1) has had the desired effect
of yielding periodic oscillations and a response curve for even very large amplitudes of
the incident pressure field.
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